
Verified Algorithm Analysis:
Correctness and Complexity

A Biased Survey

Tobias Nipkow

Fakultät für Informatik
TU München

1

Focus on algorithm analyses in ITPs

Unless otherwise noted: in Isabelle/HOL

Please let me know of missed references

Out of scope: related work on completely automatic
running time analyses by Martin Hofmann, Jan
Hoffmann, Madhavan & Kuncak, . . .

2

1 Mathematical Foundations

2 Programming and Verification Frameworks

3 Algorithms

3

1 Mathematical Foundations

2 Programming and Verification Frameworks

3 Algorithms

4

Slides and results by Manuel Eberl

5

http://www21.in.tum.de/~eberlm

Classic concepts and results

• Landau symbols

• Generating functions

• Linear recurrences (theory and solver)

• Asymptotics of n!, Γ, Hn, Cn, . . .

6

Akra–Bazzi theorem
Generalisation of the
Master Theorem for divide-and-conquer recurrences

Input (simple case):

T (x) = g(x) +
k∑

i=1

aiT (bbixe) for g ∈ Θ(xq lnr x)

Result:

T ∈ Θ(xp) T ∈ Θ(xp ln ln x)

T ∈ Θ(xq) T ∈ Θ(xp lnq+1 x)

where p is the unique solution to
∑

aib
p
i = 1

7

Examples for Akra–Bazzi

Algorithm Recurrence Solution

Binary search T (dn/2e) + O(1) O(log n)

Merge sort T (bn/2c) + T (dn/2e) + O(n) O(n log n)

Karatsuba 2T (dn/2e) + T (bn/2c) + O(n) O(nlog2 3)

Median-of-med’s T (d0.2ne) + T (d0.7ne+6) + O(n) O(n)

All of this is (almost) automatic.

8

Automated asymptotics

Isabelle can automatically prove

• f (x)
x→L−−−→ L′

• f ∈O(g), f ∈ o(g), f ∈Θ(g), f (x) ∼ g(x)

• f (x) ≤ g(x) for x sufficiently close to L

for a wide class of R-valued functions/sequences.

How? Multiseries expansions

Similar to algorithms used in Mathematica/Maple

9

Automated asymptotics

Example from Akra–Bazzi proof:

lim
x→∞

(
1− 1

b log1+ε x

)p
1 +

1

logε/2
(
bx + x

log1+ε x

)
−

(
1 +

1

logε/2 x

)
= 0+

Can be proved automatically in 0.3 s.

10

1 Mathematical Foundations

2 Programming and Verification Frameworks

3 Algorithms

11

For programming, refinement and verification
of algorithms

in Isabelle/HOL

12

Functional vs Imperative

Functional algorithms are expressed as HOL functions

Imperative algorithms are expressed in

Imperative HOL

a monadic framework with arrays and references by
Bulwahn & Co [TPHOLs 08]

Can generate code in SML, OCaml, Haskell and Scala
[Haftmann, N. FLOPS 10]

13

https://link.springer.com/chapter/10.1007/978-3-540-71067-7_14
http://www21.in.tum.de/~nipkow/pubs/flops2010.html

A problem:

Head-on verification of efficient algorithms
is painful or impossible

The cure:

Start from an abstract functional version
and refine it to an efficient (imperative) algorithm

A second problem:

Not every algorithm is deterministic:
for every neighbour do ...

14

Isabelle refinement framework
Lammich [ITP 12, ITP 13, ITP 15, CPP 16]

Provides abstract programming language with

• nondeterminism

• loops (incl. foreach)

• general recursion

• specification statement

15

http://www21.in.tum.de/~lammich

Isabelle refinement framework
Lammich [ITP 12, ITP 13, ITP 15, CPP 16]

Stepwise program refinement by:

• algorithm refinement

• semi-automatic data refinement
using verified collections library

• semi-automatic refinement to Imperative HOL

16

http://www21.in.tum.de/~lammich

Almost all referenced Isabelle proofs can be found in the

Archive of Formal Proofs (AFP)

17

http://isa-afp.org

1 Mathematical Foundations

2 Programming and Verification Frameworks

3 Algorithms

18

19

3 Algorithms
Sorting & Order statistics
Search trees
Advanced Design and Analysis Techniques
Dynamic Programming
Advanced Data Structures
Graph Algorithms
Randomized Algorithms

20

Sorting

TIMsort: java.util.Arrays.sort

• A complex combination of mergesort and insertion
sort on arrays

• De Gouw & Co [CAV 15] discover bug and suggest
fixes

• De Gouw & Co [JAR 17] verify termination and
exception freedom using the KeY system.
Meanwhile: verification of functional correctness

21

https://link.springer.com/chapter/10.1007%2F978-3-319-21690-4_16
https://link.springer.com/article/10.1007/s10817-017-9426-4

k-th smallest element
via median of medians

select k xs =

let x = select ... (map median5 (chop 5 xs));

(ls, es, gs) = partition3 x xs

in if ... then select k ls

else ... select ... gs

• Functional version by Eberl [AFP 17]

• Imperative refinement (incl linear time proof)
by Zhan & Haslbeck [IJCAR 18] using Akra-Bazzi

22

https://www.isa-afp.org/entries/Median_Of_Medians_Selection.html
https://www21.in.tum.de/~zhan/
https://www21.in.tum.de/~haslbema/

3 Algorithms
Sorting & Order statistics
Search trees
Advanced Design and Analysis Techniques
Dynamic Programming
Advanced Data Structures
Graph Algorithms
Randomized Algorithms

23

Popular case study for ITPs because nicely functional.

AVL and Red-Black trees:

• Filliâtre & Letouzey [ESOP 04] (in Coq)

• N. & Pusch [AFP 04]

• Krauss & Reiter [08]

• Charguéraud [10] (in Coq)

• Appel [11] (in Coq)

• Dross & Moy [14] (in SPARK)

• . . .

24

https://www.lri.fr/~filliatr/
https://www.isa-afp.org/entries/AVL-Trees.html
http://isabelle.in.tum.de/repos/isabelle/file/tip/src/HOL/Library/RBT_Impl.thy
http://www.chargueraud.org/softs/cfml/
https://www.cs.princeton.edu/~appel/papers/
https://link.springer.com/chapter/10.1007/978-3-319-57288-8_5

Functional correctness

• Functional correctness obvious to humans
but until recently more or less verbose in ITPs

• Most verifications based on some variant of
bst〈l , a, r〉 ↔
bst l ∧ bst r ∧ (∀x ∈ l . x < a) ∧ (∀x ∈ r . a < x)

• Correctness proofs can be automated if bst(t) is
replaced by N. sorted(inorder t) [N. ITP 16]

• Works for AVL, RBT, 2-3, 2-3-4, AA, splay and
other search trees covered in this talk

• Not automated: balance invariants

25

http://www21.in.tum.de/~nipkow/pubs/itp16.html

Some more search trees
Not in CLRS

26

Weight-Balanced Trees
Nievergelt & Reingold [72,73]

• Parameter: balance factor 0 < α ≤ 0.5
• Every subtree must be balanced:

α ≤ size of smaller child

size of whole subtree

• Insertion and deletion: single and double rotations
depending on subtle numeric conditions
• Nievergelt and Reingold deletion incorrect
• Mistake discovered and corrected by

Blum & Mehlhorn [80]
and Hirai & Yamamoto [JFP 11] (in Coq)

27

https://dl.acm.org/citation.cfm?doid=800152.804906
https://epubs.siam.org/doi/abs/10.1137/0202005?journalCode=smjcat
https://www.sciencedirect.com/science/article/pii/0304397580900183
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/balancing-weightbalanced-trees/7281C4DE7E56B74F2D13F06E31DCBC5B

Scapegoat trees
Anderson [89,99], Igal & Rivest [93]

Central idea:

Don’t rebalance every time,
Rebuild when the tree gets “too unbalanced”

• Tricky: amortized logarithmic complexity analysis

• Recently verified [N. APLAS 17]

28

https://link.springer.com/chapter/10.1007%2F3-540-51542-9_33
https://www.sciencedirect.com/science/article/pii/S0196677498909671
https://dl.acm.org/citation.cfm?id=313559.313676
http://www21.in.tum.de/~nipkow/pubs/aplas17.html

Functional finger tree
Hinze & Paterson [06]

Tree representation of sequences with

• access time to both ends in amortized O(1)

• concatenation and splitting in O(log n)

General purpose data structure for implementing
sequences, priority queues, search trees, . . .

Verifications:
• Functional correctness:

• Sozeau [ICFP 07] (in Coq)
• Nordhoff, Körner, Lammich [AFP 10]

• Amortized complexity:
• Danielsson [POPL 08] (in Agda)

29

https://www.cambridge.org/core/journals/journal-of-functional-programming/article/finger-trees-a-simple-generalpurpose-data-structure/BF419BCA07292DCAAF2A946E6BDF573B
http://doi.acm.org/10.1145/1291151.1291156
https://www.isa-afp.org/entries/Finger-Trees.html
http://www.cse.chalmers.se/~nad/publications/danielsson-popl2008.html

3 Algorithms
Sorting & Order statistics
Search trees
Advanced Design and Analysis Techniques
Dynamic Programming
Advanced Data Structures
Graph Algorithms
Randomized Algorithms

30

Huffman’s algorithm
Huffman [52]

• Purpose: lossless text compression,
eg Unix zip command

• Input: frequency table for all characters

• Output:
variable length binary code for each character
that minimizes the length of the encoded text
⇒ short codes for frequent characters

• Functional correctness proof: Blanchette [JAR 09]

31

https://ieeexplore.ieee.org/document/4051119/
https://link.springer.com/article/10.1007%2Fs10817-009-9116-y

3 Algorithms
Sorting & Order statistics
Search trees
Advanced Design and Analysis Techniques
Dynamic Programming
Advanced Data Structures
Graph Algorithms
Randomized Algorithms

32

The functional approach
Wimmer & Co [ITP 18]

Write recursive program

fib(n) = fib(n-1) + fib(n-2)

Crank the handle and obtain monadic memoized version

fib’ n := do { a ← fib’(n-1);

b ← fib’(n-2);

return (a+b) }

with correctness theorem

snd (runstate (fib’ n) empty) = fib n

33

http://www21.in.tum.de/~nipkow/pubs/itp18dp.html

where f x := rhs abbreviates

f x = do a ← lookup x;

case a of

Some r ⇒ return r |
None ⇒ do r ← rhs;

update x r;

return r

34

Automation

• Automatic definition
of monadic memoized function

• Automatic correctness proof
via parametricity reasoning

35

How is the state (= memory) realized?

36

Two state monads

• Purely functional state monad
based on some search tree

• State monad of Imperative HOL using arrays
Same O(.) running time
as standard imperative programs

37

Applications

• Bellman-Ford (SSSP)

• CYK (Context-free parsing)

• Minimum Edit Distance

• Optimal Binary Search Tree

• . . .

Including correctness proofs
But without complexity analysis (yet)

38

Optimal Binary Search Tree
Input:

• set of keys k1, . . . , kn
• access frequencies b1, . . . , bn (hits):
bi = number of searches for ki
• and a0, . . . , an (misses):
ai = number of searches in (ki , ki+1)

Algorithms for building optimal search tree:

• Straightforward recursive cubic algorithm

• Knuth [71]: a quadratic optimization

• Yao [80]: simpler proof

• N. & Somogyi [AFP 18]
39

https://link.springer.com/article/10.1007/BF00288690
https://dl.acm.org/citation.cfm?doid=800141.804691
https://www.isa-afp.org/entries/Optimal_BST.html

3 Algorithms
Sorting & Order statistics
Search trees
Advanced Design and Analysis Techniques
Dynamic Programming
Advanced Data Structures
Graph Algorithms
Randomized Algorithms

40

B-trees

Functional verification:

• Malecha & Co [POPL 10] (in Coq + Ynot)

• Ernst & Co [SSM 15] (in KIV)

41

https://dl.acm.org/citation.cfm?id=1706329
https://link.springer.com/article/10.1007%2Fs10270-013-0320-1

Priority queues

Verification of functional implementations:

• Leftist heap

• Braun tree [N. AFP 14]

• Amortized analysis of
Skew heap, Splay heap, Pairing heap
N. [ITP 16], N. & Brinkop [JAR 18]

• Binomial heap and Skew binomial heap
Meis, Nielsen, Lammich [AFP 10]

None of the above provide decrease-key . . .
Challenge!

42

https://www.isa-afp.org/entries/Priority_Queue_Braun.html
http://www21.in.tum.de/~nipkow/pubs/itp15.html
https://link.springer.com/article/10.1007/s10817-018-9459-3
https://www.isa-afp.org/entries/Binomial-Heaps.html

Union-Find
Charguéraud, Pottier, Guéneau [ITP 15, JAR 17, ESOP 18]

Framework (“Characteristic Formula”):

• Translates OCaml program into a logical formula
that captures the program behaviour, including
effects and running time.

• Import into Coq as axiom

• Verify program in Coq

Verified amortized complexity O(α(n)) of each call
(Following Alstrup & Co [JA 14])

43

https://link.springer.com/chapter/10.1007%2F978-3-319-22102-1_9
https://link.springer.com/article/10.1007/s10817-017-9431-7
https://link.springer.com/chapter/10.1007%2F978-3-319-89884-1_19

3 Algorithms
Sorting & Order statistics
Search trees
Advanced Design and Analysis Techniques
Dynamic Programming
Advanced Data Structures
Graph Algorithms
Randomized Algorithms

44

Strongly connected components

• Tarjan [72],
verified by Schimpf & Smaus [ICLA 2015]

• Gabow [IPL 00],
verified by Lammich [ITP 14]

Used in verified model checker CAVA

45

https://epubs.siam.org/doi/10.1137/0201010
https://link.springer.com/chapter/10.1007/978-3-662-45824-2_11
https://www.sciencedirect.com/science/article/pii/S002001900000051X
https://link.springer.com/chapter/10.1007/978-3-319-08970-6_21
https://link.springer.com/chapter/10.1007%2F978-3-642-39799-8_31

Dijkstra (SSSP)
Dijkstra [59]

Functional correctness verified:

• Nordhoff & Lammich [AFP 12]:
purely functionally with finger trees

• Lammich [CPP 16]:
imperative with arrays

46

https://www.isa-afp.org/entries/Dijkstra_Shortest_Path.html
https://dl.acm.org/citation.cfm?doid=2854065.2854067

Floyd-Warshall (APSP)

Functional correctness verified by
Wimmer & Lammich [AFP 17]:

• Functional implementation

• Refined to imperative algorithm on an array

• Main complication: destructive update

• All related verifications make simplifying
assumptions — also in CLRS

47

https://www.isa-afp.org/entries/Floyd_Warshall.html

Maximum network flow

• Edmonds-Karp:
Lammich & Sefidgar [ITP 16]
Imperative, running time O(|V ||E |2)

• Push-Relabel (2 variants):
Lammich & Sefidgar [JAR 17]
Imperative, running time O(|V |2|E |)

Competitive with a Java implementation

48

https://link.springer.com/chapter/10.1007%2F978-3-319-43144-4_14
https://link.springer.com/article/10.1007/s10817-017-9442-4

3 Algorithms
Sorting & Order statistics
Search trees
Advanced Design and Analysis Techniques
Dynamic Programming
Advanced Data Structures
Graph Algorithms
Randomized Algorithms

49

Randomized algorithms
formalized

Purely functionally via the Giry monad

Example:

do { a ← some distribution;
b ← some other distribution (a);
return (a+b) }

50

Quicksort

• van der Weegen & McKinna [ITP 08] (in Coq)
Proved expected running time of randomized and
deterministic quicksort ≤ 2ndlog2 ne
• Eberl & Co [ITP 18]

Proved closed form 2(n + 1)Hn − 4n
and asymptotics ∼ 2n ln n

• Tassarotti & Harper [ITP 18] (in Coq)
Formalized and extended cookbook method for tail
bounds [Karp JACM 94]
Applied it to quicksort:
Pr[T (n) > (c + 1)n log4/3 n + 1] ≤ 1

nc−1

51

https://link.springer.com/chapter/10.1007/978-3-642-02444-3_16
http://www21.in.tum.de/~nipkow/pubs/itp18bin.html
https://dl.acm.org/citation.cfm?id=195632

Analysis of random BSTs
Eberl & Co [ITP 18]

“Random BST” means

BST generated from a random permutation of keys

Thm Expected height of random BST
≤ . . . ∼ 3 log2 n

Thm Distribution of internal path lengths
= distribution of running times of quicksort

52

http://www21.in.tum.de/~nipkow/pubs/itp18bin.html

Treaps
Aragon & Seidel [89, 96]

Random BSTs are pretty good,
but keys are typically not random

Treaps: combine each key with a random priority

9
h

4
c

7
j

2
a

0
e

treap = tree + heap

53

https://ieeexplore.ieee.org/document/63531
https://link.springer.com/article/10.1007/BF01940876

Treaps verified
Eberl & Co [ITP 18]

• Functional correctness straightforward

• Treaps need a continuous distribution of priorities to
avoid duplicates (with probability 1)

• Reasoning about continuous distributions is hard
because of measurability proofs

• Thm Distribution of treaps
= distribution of random BSTs (modulo priorities)

54

http://www21.in.tum.de/~nipkow/pubs/itp18bin.html

Conclusion: Comparison with CLRS

The first 750 pages (parts I–VI, the “core”)

• Much of the basic material has been verified
• Major omissions (afaik):

• Hashing incl. probabilities
• Fibonacci heaps
• van Emde Boas trees

55

