Pure I

Jørgen Villadsen

May 2021

Contents

```
theory Pure-I imports Pure begin
typedecl bool
\mathbf{judgment} \ \mathit{Trueprop} :: \langle \mathit{bool} \Rightarrow \mathit{prop} \rangle \ (\langle \mathord{-} \mathord{\cdot} \rangle)
axiomatization Imp (infixr \longleftrightarrow 3)
   where Imp-I [intro]: \langle (p \Longrightarrow q) \Longrightarrow p \longrightarrow q \rangle
      and Imp-E \ [elim]: \langle p \longrightarrow q \Longrightarrow p \Longrightarrow q \rangle
axiomatization Dis (infix \langle \lor \rangle \downarrow)
   where Dis-E [elim]: \langle p \lor q \Longrightarrow (p \Longrightarrow r) \Longrightarrow (q \Longrightarrow r) \Longrightarrow r \rangle
      and Dis-I1 [intro]: \langle p \Longrightarrow p \lor q \rangle
      and Dis-I2 [intro]: \langle q \Longrightarrow p \lor q \rangle
axiomatization Con (infixr \langle \wedge \rangle 5)
   where Con-I [intro]: \langle p \Longrightarrow q \Longrightarrow p \land q \rangle
      and Con\text{-}E1 [elim]: \langle p \land q \Longrightarrow p \rangle
      and Con-E2 [elim]: \langle p \land q \Longrightarrow q \rangle
axiomatization Falsity (\langle \bot \rangle)
   where Falsity-E [elim]: \langle \bot \implies p \rangle
definition Truth (\langle \top \rangle) where \langle \top \equiv \bot \longrightarrow \bot \rangle
theorem Truth-I [intro]: \langle \top \rangle
   unfolding Truth-def ..
definition Neg (\langle \neg \neg \rangle [6] 6) where \langle \neg p \equiv p \longrightarrow \bot \rangle
theorem Neg-I [intro]: \langle (p \Longrightarrow \bot) \Longrightarrow \neg p \rangle
   unfolding Neg-def ..
theorem Neg-E [elim]: \langle \neg p \Longrightarrow p \Longrightarrow q \rangle
   unfolding Neq-def
proof -
   assume \langle p \longrightarrow \bot \rangle and \langle p \rangle
   then have \langle \perp \rangle ..
   then show \langle q \rangle ..
qed
definition Iff (infixr \longleftrightarrow 3) where \langle p \longleftrightarrow q \equiv (p \longrightarrow q) \land (q \longrightarrow p) \rangle
theorem Iff-I [intro]: \langle (p \Longrightarrow q) \Longrightarrow (q \Longrightarrow p) \Longrightarrow p \longleftrightarrow q \rangle
   unfolding Iff-def
proof -
   \mathbf{assume} \ \langle p \Longrightarrow q \rangle \ \mathbf{and} \ \langle q \Longrightarrow p \rangle
```

```
from \langle p \Longrightarrow q \rangle have \langle p \longrightarrow q \rangle ..
    \mathbf{from} \ \langle q \Longrightarrow p \rangle \ \mathbf{have} \ \langle q \longrightarrow p \rangle \ ..
    \mathbf{from} \ \langle p \longrightarrow q \rangle \ \mathbf{and} \ \langle q \longrightarrow p \rangle \ \mathbf{show} \ \langle (p \longrightarrow q) \ \wedge \ (q \longrightarrow p) \rangle \ \dots
qed
theorem Iff-E1 [elim]: \langle p \longleftrightarrow q \Longrightarrow p \Longrightarrow q \rangle
    unfolding Iff-def
proof –
    \mathbf{assume} \ \langle (p \longrightarrow q) \land (q \longrightarrow p) \rangle
    then have \langle p \longrightarrow q \rangle ..
   then show \langle p \Longrightarrow q \rangle ..
qed
theorem Iff-E2 [elim]: \langle p \longleftrightarrow q \Longrightarrow q \Longrightarrow p \rangle
    \mathbf{unfolding}\ \mathit{Iff-def}
proof -
    \mathbf{assume} \ \langle (p \longrightarrow q) \land (q \longrightarrow p) \rangle
    then have \langle q \longrightarrow p \rangle ..
    then show \langle q \Longrightarrow p \rangle ..
qed
proposition \langle p \longrightarrow \neg \neg p \rangle
proof
    assume \langle p \rangle
    show \langle \neg \neg p \rangle
    proof
       assume \langle \neg p \rangle
       from \langle \neg p \rangle and \langle p \rangle show \langle \bot \rangle ...
    qed
qed
proposition \langle (p \longrightarrow q) \land \neg q \longrightarrow \neg p \rangle
proof
    \mathbf{assume} \ \langle (p \longrightarrow q) \land \neg \ q \rangle
    show \langle \neg p \rangle
    proof
       assume \langle p \rangle
       \mathbf{from} \mathrel{\langle} (p \longrightarrow q) \mathrel{\wedge} \lnot q \mathrel{\rangle} \mathbf{have} \mathrel{\langle} p \longrightarrow q \mathrel{\rangle} ..
       from \langle p \longrightarrow q \rangle and \langle p \rangle have \langle q \rangle ..
       from \langle (p \longrightarrow q) \land \neg \ q \rangle have \langle \neg \ q \rangle ..
       from \langle \neg q \rangle and \langle q \rangle show \langle \bot \rangle ...
    qed
qed
\textbf{proposition} \ \langle (p \longleftrightarrow q) \longleftrightarrow q \longleftrightarrow p \rangle
proof
    \mathbf{assume} \ \langle p \longleftrightarrow q \rangle
    \mathbf{show} \ \langle q \longleftrightarrow p \rangle
    proof
       from \langle p \longleftrightarrow q \rangle show \langle q \Longrightarrow p \rangle ..
       \mathbf{from} \ \langle p \longleftrightarrow q \rangle \ \mathbf{show} \ \langle p \Longrightarrow q \rangle \ \boldsymbol{.} .
    qed
\mathbf{next}
    assume \langle q \longleftrightarrow p \rangle
    \mathbf{show} \ \langle p \longleftrightarrow q \rangle
    proof
       from \langle q \longleftrightarrow p \rangle show \langle p \Longrightarrow q \rangle ...
       \mathbf{from} \ \langle q \longleftrightarrow p \rangle \ \mathbf{show} \ \langle q \Longrightarrow p \rangle \ \boldsymbol{.} .
```

 $\begin{matrix} \mathbf{qed} \\ \mathbf{qed} \end{matrix}$

 \mathbf{end}