Verified Algorithm Analysis: Correctness and Complexity A Biased Survey

Tobias Nipkow

Fakultät für Informatik TU München Focus on algorithm analyses in ITPs Unless otherwise noted: in Isabelle/HOL Please let me know of missed references

Out of scope: related work on completely automatic running time analyses by Martin Hofmann, Jan Hoffmann, Madhavan & Kuncak, ...

1 Mathematical Foundations

2 Programming and Verification Frameworks

1 Mathematical Foundations

2 Programming and Verification Frameworks

3 Algorithms

Slides and results by Manuel Eberl

Classic concepts and results

- Landau symbols
- Generating functions
- Linear recurrences (theory and solver)
- Asymptotics of n!, Γ , H_n , C_n , ...

Akra–Bazzi theorem

Generalisation of the *Master Theorem for divide-and-conquer recurrences*

Input (simple case):

$$T(x) = g(x) + \sum_{i=1}^{k} a_i T(\lfloor b_i x
ceil) \quad ext{for } g \in \Theta(x^q \ln^r x)$$

Result:

$$egin{aligned} &\mathcal{T}\in\Theta(x^p) \quad \mathcal{T}\in\Theta(x^p\ln\ln x)\ &\mathcal{T}\in\Theta(x^q) \quad \mathcal{T}\in\Theta(x^p\ln^{q+1}x) \end{aligned}$$
 where p is the unique solution to $\sum a_i b_i^p = 1$

Examples for Akra–Bazzi

Algorithm	Recurrence	Solution
Binary search	$T(\lceil n/2 \rceil) + O(1)$	$O(\log n)$
Merge sort	$T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n)$	$O(n \log n)$
Karatsuba	$2T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + O(n)$	$O(n^{\log_2 3})$
Median-of-med's	$T(\lceil 0.2n \rceil) + T(\lceil 0.7n \rceil + 6) + O(n)$	O(n)

All of this is (almost) automatic.

Automated asymptotics

Isabelle can automatically prove

•
$$f(x) \xrightarrow{x \to L} L'$$

- $f \in O(g), f \in o(g), f \in \Theta(g), f(x) \sim g(x)$
- $f(x) \leq g(x)$ for x sufficiently close to L

for a wide class of $\mathbb R\text{-valued}$ functions/sequences.

How? Multiseries expansions

Similar to algorithms used in Mathematica/Maple

Automated asymptotics

Example from Akra–Bazzi proof:

$$\lim_{x \to \infty} \left(1 - \frac{1}{b \log^{1+\varepsilon} x} \right)^p \left(1 + \frac{1}{\log^{\varepsilon/2} \left(bx + \frac{x}{\log^{1+\varepsilon} x} \right)} \right) - \left(1 + \frac{1}{\log^{\varepsilon/2} x} \right) = 0^+$$

Can be proved automatically in 0.3 s.

1 Mathematical Foundations

2 Programming and Verification Frameworks

3 Algorithms

For programming, refinement and verification of algorithms in Isabelle/HOL

Functional vs Imperative

Functional algorithms are expressed as HOL functions

Imperative algorithms are expressed in

Imperative HOL

a monadic framework with arrays and references by Bulwahn & Co [TPHOLs 08]

Can generate code in SML, OCaml, Haskell and Scala [Haftmann, N. <u>FLOPS 10]</u>

A problem:

Head-on verification of efficient algorithms is painful or impossible

The cure:

Start from an abstract functional version and refine it to an efficient (imperative) algorithm

A second problem:

Not every algorithm is deterministic: for every neighbour do ... Isabelle refinement framework Lammich [ITP 12, ITP 13, ITP 15, CPP 16]

Provides abstract programming language with

- nondeterminism
- loops (incl. foreach)
- general recursion
- specification statement

Isabelle refinement framework Lammich [ITP 12, ITP 13, ITP 15, CPP 16]

Stepwise program refinement by:

- algorithm refinement
- semi-automatic data refinement using verified collections library
- semi-automatic refinement to Imperative HOL

Almost all referenced Isabelle proofs can be found in the

Archive of Formal Proofs (AFP)

1 Mathematical Foundations

2 Programming and Verification Frameworks

Sorting

TIMsort: java.util.Arrays.sort

- A complex combination of mergesort and insertion sort on arrays
- De Gouw & Co [<u>CAV 15</u>] discover bug and suggest fixes
- De Gouw & Co [JAR 17] verify termination and exception freedom using the KeY system. Meanwhile: verification of functional correctness

k-th smallest element via median of medians

- Functional version by Eberl [AFP 17]
- Imperative refinement (incl linear time proof) by <u>Zhan</u> & <u>Haslbeck</u> [IJCAR 18] using Akra-Bazzi

Algorithms Sorting & Order statistics Search trees Advanced Design and Analysis Techniques Dynamic Programming Advanced Data Structures Graph Algorithms Randomized Algorithms

23

Popular case study for ITPs because nicely functional.

AVL and Red-Black trees:

- <u>Filliâtre</u> & Letouzey [ESOP 04] (in Coq)
- N. & Pusch [<u>AFP 04]</u>
- Krauss & Reiter [08]
- Charguéraud [10] (in Coq)
- <u>Appel</u> [11] (in Coq)
- Dross & Moy [<u>14</u>] (in SPARK)

Functional correctness

- Functional correctness obvious to humans but until recently more or less verbose in ITPs
- Most verifications based on some variant of bst (1, a, r) ↔
 bst 1 ∧ bst r ∧ (∀x ∈ I. x < a) ∧ (∀x ∈ r. a < x)
- Correctness proofs can be automated if *bst(t)* is replaced by N. *sorted(inorder t)* [N. <u>ITP 16</u>]
- Works for AVL, RBT, 2-3, 2-3-4, AA, splay and other search trees covered in this talk
- Not automated: balance invariants

Some more search trees Not in CLRS

Weight-Balanced Trees

Nievergelt & Reingold [72,73]

- Parameter: balance factor $0 < \alpha \le 0.5$
- Every subtree must be balanced:

(

$$\alpha \leq \frac{\text{size of smaller child}}{\text{size of whole subtree}}$$

- Insertion and deletion: single and double rotations depending on subtle numeric conditions
- Nievergelt and Reingold deletion incorrect
- Mistake discovered and corrected by Blum & Mehlhorn [80] and Hirai & Yamamoto [JFP 11] (in Coq)

Scapegoat trees

Anderson [89,99], Igal & Rivest [93]

Central idea:

Don't rebalance every time, Rebuild when the tree gets "too unbalanced"

- Tricky: amortized logarithmic complexity analysis
- Recently verified [N. APLAS 17]

Functional finger tree

Hinze & Paterson [06]

Tree representation of sequences with

- access time to both ends in amortized O(1)
- concatenation and splitting in $O(\log n)$

General purpose data structure for implementing sequences, priority queues, search trees, ...

Verifications:

- Functional correctness:
 - Sozeau [ICFP 07] (in Coq)
 - Nordhoff, Körner, Lammich [AFP 10]
- Amortized complexity:
 - Danielsson [POPL 08] (in Agda)

3 Algorithms

Sorting & Order statistics Search trees Advanced Design and Analysis Techniques Dynamic Programming Advanced Data Structures Graph Algorithms Randomized Algorithms

Huffman's algorithm

- Purpose: lossless text compression, eg Unix zip command
- Input: frequency table for all characters
- Output:

variable length *binary code* for each character that minimizes the length of the encoded text \Rightarrow short codes for frequent characters

• Functional correctness proof: Blanchette [JAR 09]

3 Algorithms

Sorting & Order statistics Search trees Advanced Design and Analysis Techniques Dynamic Programming Advanced Data Structures Graph Algorithms Randomized Algorithms

The functional approach

Wimmer & Co [ITP 18]

Write recursive program

fib(n) = fib(n-1) + fib(n-2)

Crank the handle and obtain monadic memoized version

fib' n := do {
$$a \leftarrow fib'(n-1);$$

 $b \leftarrow fib'(n-2);$
 return (a+b) }

with correctness theorem

snd (runstate (fib' n) empty) = fib n

where f x := rhs abbreviates f x = do a \leftarrow lookup x; case a of Some r \Rightarrow return r | None \Rightarrow do r \leftarrow rhs; update x r; return r

Automation

- Automatic definition of monadic memoized function
- Automatic correctness proof via parametricity reasoning

How is the state (= memory) realized?

Two state monads

- Purely functional state monad based on some search tree
- State monad of Imperative HOL using arrays Same O(.) running time as standard imperative programs

Applications

- Bellman-Ford (SSSP)
- CYK (Context-free parsing)
- Minimum Edit Distance
- Optimal Binary Search Tree

• . . .

Including correctness proofs But without complexity analysis (yet)

Optimal Binary Search Tree

Input:

- set of keys k_1, \ldots, k_n
- access frequencies b₁,..., b_n (hits):
 b_i = number of searches for k_i
- and a_0, \ldots, a_n (misses): $a_i =$ number of searches in (k_i, k_{i+1})

Algorithms for building optimal search tree:

- Straightforward recursive cubic algorithm
- Knuth [<u>71</u>]: a quadratic optimization
- Yao [80]: simpler proof
- N. & Somogyi [<u>AFP 18]</u>

3 Algorithms

Sorting & Order statistics Search trees Advanced Design and Analysis Techniques Dynamic Programming Advanced Data Structures

Graph Algorithms Randomized Algorithms

B-trees

Functional verification:

- Malecha & Co [POPL 10] (in Coq + Ynot)
- Ernst & Co [<u>SSM 15</u>] (in KIV)

Priority queues

Verification of functional implementations:

- Leftist heap
- Braun tree [N. <u>AFP 14]</u>
- Amortized analysis of Skew heap, Splay heap, Pairing heap N. [ITP 16], N. & Brinkop [JAR 18]
- Binomial heap and Skew binomial heap Meis, Nielsen, Lammich [AFP 10]

None of the above provide decrease-key ... Challenge!

Union-Find

Charguéraud, Pottier, Guéneau [ITP 15, JAR 17, ESOP 18]

Framework ("Characteristic Formula"):

- Translates OCaml program into a logical formula that captures the program behaviour, including effects and running time.
- Import into Coq as axiom
- Verify program in Coq

Verified amortized complexity $O(\alpha(n))$ of each call (Following Alstrup & Co [JA 14])

3 Algorithms

Sorting & Order statistics Search trees Advanced Design and Analysis Techniques Dynamic Programming Advanced Data Structures **Graph Algorithms** Randomized Algorithms

Strongly connected components

- Tarjan [<u>72</u>], verified by Schimpf & Smaus [<u>ICLA 2015</u>]
- Gabow [<u>IPL 00</u>], verified by Lammich [<u>ITP 14</u>]
- Used in verified model checker CAVA

Dijkstra (SSSP) Dijkstra [59]

Functional correctness verified:

- Nordhoff & Lammich [<u>AFP 12</u>]: purely functionally with finger trees
- Lammich [<u>CPP 16</u>]: imperative with arrays

Floyd-Warshall (APSP)

Functional correctness verified by Wimmer & Lammich [AFP 17]:

- Functional implementation
- Refined to imperative algorithm on an array
- Main complication: destructive update
- All related verifications make simplifying assumptions also in CLRS

Maximum network flow

- Edmonds-Karp: Lammich & Sefidgar [<u>ITP 16</u>] Imperative, running time O(|V||E|²)
- Push-Relabel (2 variants): Lammich & Sefidgar [JAR 17] Imperative, running time O(|V|²|E|)

Competitive with a Java implementation

3 Algorithms

Sorting & Order statistics Search trees Advanced Design and Analysis Techniques Dynamic Programming Advanced Data Structures Graph Algorithms Randomized Algorithms

Randomized algorithms formalized

Purely functionally via the Giry monad

Example:

Quicksort

- van der Weegen & McKinna [<u>ITP 08</u>] (in Coq) Proved expected running time of randomized and deterministic quicksort ≤ 2n [log₂ n]
- Eberl & Co [ITP 18] Proved closed form $2(n+1)H_n - 4n$ and asymptotics $\sim 2n \ln n$
- Tassarotti & Harper [ITP 18] (in Coq) Formalized and extended cookbook method for tail bounds [Karp JACM 94] Applied it to quicksort: Pr[T(n) > (c+1)n log_{4/3} n+1] ≤ 1/n^{c-1}

Analysis of random BSTs Eberl & Co [ITP 18]

"Random BST" means

BST generated from a random permutation of keys

- **Thm** Expected height of random BST $\leq \ldots \sim 3 \log_2 n$
- **Thm** Distribution of internal path lengths = distribution of running times of quicksort

Treaps

Aragon & Seidel [89, 96]

Random BSTs are pretty good, but keys are typically not random

Treaps: combine each key with a random priority

treap = tree + heap

Treaps verified Eberl & Co [ITP 18]

- Functional correctness straightforward
- Treaps need a *continuous* distribution of priorities to avoid duplicates (with probability 1)
- Reasoning about continuous distributions is hard because of measurability proofs
- **Thm** Distribution of treaps = distribution of random BSTs (modulo priorities)

Conclusion: Comparison with CLRS

The first 750 pages (parts I–VI, the "core")

- Much of the basic material has been verified
- Major omissions (afaik):
 - Hashing incl. probabilities
 - Fibonacci heaps
 - van Emde Boas trees